1、linalg = linear(线性)+ algebra(代数),norm则表示范数。
首先需要注意的是范数是对向量(或者矩阵)的度量,是一个标量(scalar):
2、函数参数
x_norm=np.linalg.norm(x, ord=None, axis=None, keepdims=False)
x
: 表示矩阵(也可以是一维)ord
:范数类型>>> x = np.array([3, 4]) >>> np.linalg.norm(x) 5. >>> np.linalg.norm(x, ord=2) 5. >>> np.linalg.norm(x, ord=1) 7. >>> np.linalg.norm(x, ord=np.inf) 4
范数理论的一个推论:
linalg=linear(线性)+algebra(代数),norm则表示范数。
以上为个人经验,希望能给大家一个参考,也希望大家多多支持脚本之家。
编程 | 2023-02-24 21:36
编程 | 2023-02-21 12:51
编程 | 2023-02-21 12:47
编程 | 2023-02-21 00:15
编程 | 2023-02-21 00:08
编程 | 2023-02-20 21:46
编程 | 2023-02-20 21:42
编程 | 2023-02-20 21:36
编程 | 2023-02-20 21:32
编程 | 2023-02-20 18:12
网友评论